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Abstract. This writing presents an architecture proposal designed to implement 
a control loop in a mobile-wheeled under-actuated inverted pendulum system, 
using spiking neural networks, linear quadratic regulator control technique, and 
a neural framework that allows us to define the neuron ensembles specification 
to represent specific control signals. 
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1 Introduction 

4.0 Industry has brought a massive proliferation of sensors and data acquisition devices 
for monitoring and analysis purposes. This situation has escalated quickly, as the 
amount of recollected data overpasses any computation and storage capacities needed 
to provide information solutions that allow intelligent decision-making using Big Data 
process techniques. Storing all the information is not feasible anymore, so new analysis 
techniques have appeared, such as artificial neural networks, which have proven to be 
very useful in online learning scenarios. 

Spiking neural networks (SNN), also known as artificial third-generation neural 
networks, intend to emulate biological plausibility, physical, chemical, and 
biological mechanisms, allowing computation and Hebbian learning to occur 
in biological living systems. These models have optimal characteristics for hardware 
implementation [1, 2]. 

It promises enormous parallel computing capacity and low energetic usage, enabling 
feasible online learning platforms to implement size and power restriction applications, 
such as robotics. Neurorobotics [3, 4] is a discipline that takes as a challenge to 
design control mechanisms, hardware, and implementation techniques for robotic 
applications. These agents adapt their behavior up to changes in themselves or the 
environment dynamics. 

This situation can be seen in biological systems with growing limbs or holding a 
heavy object, alien to its composition, or perhaps, aging, which modifies friction in arm 
or leg joints. One of the most evident obstacles in neurorobotics development is the 
shortage of physical platforms for neuromorphic computation. However, there are 
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simulation platforms that allow designing the neural structures needed for 
future  implementations. 

Some efforts such as Human Brain Project [5], which has a neurorobotics platform 
[6], allow to simulate a brain or physical body and explore how to control movement, 
stimuli reaction and learn from a virtual or real environment. Another platform, 
primarily focused on SNN implementation, is called Nengo [7-9], a tool that allows to 
build and design SNNs architectures. It is quite flexible, as the user can define its 
neural models, its own learning rules, optimization methods, reuse of subnetworks, data 
input, and even has libraries for exporting these models to neuromorphic hardware 
or FPGA implementations. 

As a small tour in literature, in [10], an adaptive control method proposed in [11] is 
used, allowing them to control a three-link arm in simulation, using a spiking neural 
network structure designed to estimate the inverse jacobian dynamics. Here, authors 
name part of their proposed neural network as their biological counterpart to match 
specific tasks made by natural brains. In [12], control of a simulated robotic arm, 
without path planning, is achieved using SNNs and motor primitives. In [13], a 
biologically inspired spiking neural network (SNN) for soft-grasping to control a 
robotic hand, used for robots interacting with objects shaped for humans, is presented. 

Finally, in [14], a hardware adaptive control implementation of a Kinova Jaco 
robotic arm using the Loihi platform [15] is introduced. These three examples have 
something in common; these are complete actuated systems. In this work, an 
implementation of a linear quadratic regulator (LQR) strategy using SNN is presented 
as an introductory example of how Nengo and SNN can be used for 
under-actuated systems, showing which obstacles must be tackled to perform precise 
control  signal representation. 

The Mobile Wheeled Inverted Pendulum (MWIP) is an easily controllable system 
for a human with a bit of practice but a challenge in control theory. 

Although some of these under-actuated systems show controllability under 
linearization around a certain equilibrium point, the control tasks entitle arbitrary output 
reference trajectory tracking, taking the system state away from the equilibrium point, 
thus overcoming a traditional obstacle to linearization-based control of nonlinear 
systems [16]. 

 

Fig. 1. 2D MWIP model, extracted from [17]. 
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This document is organized as follows. Section 2 describes the MWIP dynamics and 
the LQR control technique used for controlling the system. Section 3 describes which 
methodology was used to create an SNN structure to represent the LQR controller and 
shows its implementation in Nengo software simulation. Section 4 shows the 
configuration parameter for the simulation and its results. Finally, section 5 is used for 
conclusions and proposed future work. 

2 Dynamics and Control Strategy of the Robotic System 

2.1 Dynamic Model of the System 

Fig. 1 shows the graphical representation of the MWIP (Mobile Wheeled Inverted 
Pendulum). Here, 𝑥௪ , 𝑦௪  are the wheel coordinates, 𝑥௕ , 𝑦௕  are the mass center 
coordinates of the bar, α is the plane's angle inclination, 𝑚௕ , 𝑚௪ stand for the bar and 
the wheel's mass, respectively, 𝐼௕ , 𝐼௪ are the moments of inertia from the bar and the 
wheel, 𝐿 is the bar's length, 𝑟 is the radius of the wheel, and θ௪ , θ௕  are the states of 
the system, which stand for the rotation angle of the wheel, and the bar's inclination, 
in that order. 

The robotic system corresponds to a second-order underactuated system [18]. 
Starting from the modeling dynamics using Euler-Lagrange technique in [17], setting 
α = 0 leads to a system with the following depiction: 

𝑀(𝑞)�̈� = 𝐶(𝑞, �̇�, 𝑢), (1) 

where: 𝑀(⋅) is the inertia matrix, C(⋅) groups the coriolis, gravity, and control terms, 
and the extended form of this equation is: 

൬
(𝑚௕ + 𝑚௪)𝑟ଶ + 𝐼௪ 𝑚௕𝐿𝑟 𝑐𝑜𝑠(𝜃௕) 

𝑚௕𝐿𝑟 cos(𝜃௕) 𝑚௕𝐿ଶ + 𝐼௕ 
൰ ቆ

𝜃௪̈

𝜃௕̈

ቇ = ቆ
𝑢 + 𝑚௕𝐿𝑟 𝜃௕

ଶ̇  sin(𝜃௕)

−𝑢 + 𝑚௕𝑔 𝐿 sin(𝜃௕)
ቇ. (2) 

Here, 𝑢 is the control signal. It is worth mentioning the motor is mounted in the hub 
that connects the wheel and bar, so the used torque is the same but in the opposite 
direction. To obtain the accelerations of the system, we rewrite eq. (2) as: 

�̈� = 𝑀(𝑞)ିଵ ⋅ 𝑐(�̇�, 𝑞). (3) 

Both second-order differential equations can be represented in four first-order 
equations, this is, rewriting the system in a space state manner, such as �̈� =

𝑓(𝑞, �̇�, 𝑢). Setting 𝑥 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ] = ൣθ௪ , θ௪̇ , θ௕ , θ௕̇൧, the system can be linearized 
in its equilibrium states θ௕ = θ௪̇ = θ௕̇ = 0, which is equivalent to a pendulum in an 
upright position. Therefore, the linearized system results in the form �̇� = 𝐴𝑥 + 𝐵𝑢 with 
the matrices 𝐴, 𝐵 given by: 
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𝐴 =  

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0

0 0
−𝑔𝐿ଶ𝑚௕

ଶ𝑟

𝑧
0

0 0 0 1

0 0 −
𝑔𝐿𝑚௕

ଶ𝑟ଶ + 𝑔𝐿𝑚௪𝑚௕𝑟ଶ + 𝐼௪𝑔𝐿𝑚௕

𝑧
0⎦

⎥
⎥
⎥
⎥
⎤

 , (4) 

𝐵 =  

⎣
⎢
⎢
⎢
⎢
⎡

0
𝑚௕𝐿ଶ − 𝑚௕𝑟𝐿 + 𝐼௕ 

𝑧
0

−
𝐼௪ + 𝑚௕𝑟ଶ + 𝑚௪𝑟ଶ − 𝐿𝑚௕𝑟

𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 . (5) 

With: 

𝑧 = 𝐼௕𝐼௪ + 𝐼௪𝐿ଶ𝑚௕ + 𝐼௕𝑚௕𝑟ଶ + 𝐼௕𝑚௪𝑟ଶ + 𝐿ଶ𝑚௕𝑚௪𝑟ଶ. (6) 

It can be easily shown that the system is fully controllable and observable. 

2.2 Linear Quadratic Regulator (LQR) 

The goal then is to move the vector state 𝑥  from an initial condition to a desired 
vector 𝑥ௗ. Finding a control law 𝑢 = −𝐾௥(𝑥 − 𝑥ௗ) for the MWIP system, which moves 
the closed-loop eigenvalues of the system as far as required on the left half of the 
complex plane, in order to achieve optimal control, is a task of optimization. 

Choosing over stable eigenvalues might cause the system to overreact to small 
perturbations or noise or require high control signals, which might overpass the 
actuator's capacity. On the other side, choosing eigenvalues as close as possible to the 
right half in the complex plane might result in long stabilization times and small control 
signals, leading to instability. 

The Linear Quadratic Regulator [19] (LQR hereinafter) consists in to deliver a full-
state feedback control method that minimizes the following cost function: 

 

Fig. 2. SNN structure proposed for the control simulation. 
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𝐽(𝑡) = ቆන (𝑥 − 𝑥ௗ)்
ஶ

଴

𝑄(𝑥 − 𝑥ௗ) + 𝑢்𝑅𝑢ቇ 𝑑𝑡. (4) 

The function in (4) pictures a balance between the energetic cost of an effective state 
regulation, which is intended to be minimized, and a quicker control response, which 
is intended to be fast. 

These objectives are regulated by 𝑄 = 𝑄் ≥ 0 and 𝑅 = 𝑅் ≥ 0 respectively, and 
they can be selected as wished to prioritize control objectives. As bigger is 𝑄, it will 
move the system to the desired vector state as soon as possible. As big as 𝑅 might be, 
lower control signals will be the priority, while 𝐽 = lim

௧→ஶ
𝑥(𝑡) = 0. 

As 𝐽(⋅) is a quadratic function, there exists an analytic solution for control weights 
in 𝐾௥  given by: 

𝐾௥ = 𝑅ିଵ𝐵𝑃, (5) 

where 𝑃 is the Ricatti's algebraic equation solution: 

𝑃𝐴 + 𝐴𝑃் − 𝑃𝐵𝑅ିଵ𝐵்𝑃 + 𝑄 = 0. (6) 

In order to solve eq. (6) there are several software-implemented methods [20, 21], 
which start from a known 𝐴, 𝐵 for a �̈� = 𝑓(𝑞, �̇�, 𝑢) system dynamics.  

 

Fig. 3. Spike-based sparse coding. A reconstruction of the signal is obtained from combining 
filtered spike trains together, and spikes are timed to make the reconstruction accurate. Extracted 
from [26]. 

Table 1. MWIP model parameters used for simulation. 

Parameter Value 

𝑚௕ 1[𝑘𝑔] 
𝑚௪ 2[𝑘𝑔] 

𝐿 1.2[𝑚] 
𝑟 0.25[𝑚] 

𝐼௪ 10[𝑁/𝑚] 
𝐼௕ 10[𝑁/𝑚] 
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3 Neural Network Simulation 

In order to design and implement the neural network, the principles developed in Neural 
Engineering Framework (NEF) [27, 28] are used. NEF can be seen as a 'neural 
compiler' that guarantees an optimal global approximation of the defined dynamic 
equations by the user-defined groups of neurons called ensembles. Given a signal, it is 
possible to use a nonlinear encoding matrix 𝐸 to parse it into a spike domain. 

Then, recover an approximation of the original signal through a linear decoding 
matrix  𝐷 , obtaining then the synaptic weights 𝑊 =  𝐸𝐷  for the ensemble. Once 
connected, the resulting network approximates the ideal signal according to neural 
heterogeneity, stochasticity, and connectivity, affecting its performance. 

This is called Spike-based sparse coding, and it can be seen in Fig. 3 [26] Fig. 2 
shows the implemented SNN using the simulation software Nengo [22], which provides 
libraries for define and connect ensembles, which once connected between them, 
Nengo will find the appropriate synaptic weights using a learning rule (such as STDP) 
to represent any stimuli value proportioned, and represent it on the next ensemble. 

This is achieved using the methodology described in NEF and BCM theory [23,24], 
which describes how synaptic plasticity on cortical neurons is stabilized by the average 
postsynaptic activity. All the neurons in this proposed model use Leaky Integrate and 
Fire (LIF) [25] model for its representation. 

  

Fig. 4. Evolution of the Vector State (left: simple control loop simulation without SNN, right: 
using the proposed SNN structure). 

 

Fig. 5. Evolution of error signal for each state, simulating the proposed SNN structure. 
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As part of the encoding, each ensemble can encode a signal from a minimum to a 
maximum value. Nengo allows the user to modify this parameter in the ensemble 
construction, in order to define the represented function domain. This domain is called 
radius. By default, this radius is set between [-1, 1]. 

However, as soon we reset to a bigger domain, the number of neurons in the 
ensemble needs to be implemented. If this is not the case, the output signal will lose 
resolution, creating noisy output signals. A small radius then implies better 
precision. Up next, each of the elements of the proposed structure in Fig. 2 is described: 

– Reference: A small function that returns the desired vector state 𝑥ௗ. 

– Cerebellum: 1000×4 neuron ensemble, which encodes the state from the MWIP. 
Radius (-10, 10). Similarly called like this as [10]. 

– Error:100 × 4 neuron ensemble encodes the signal reference and computes the 
difference between the actual and the reference vector state. Radius (-3.1416, 
3.1416). 

– Control 𝑈: 1000 ×  4 neuron ensemble, which computes the control signal for 
each state variable. Range (-350,350). 

– MWIP Animation: Node used for MWIP simulation, with one control input (𝑢) 
and four outputs  (θ௪ , θ௪̇ , θ௕ , θ௕̇ ). 

The ensemble's radius was selected according to the function domain for each state 
variable represented. Nevertheless, some states such as angular velocities θ௪̇ ,  θ௕

̇  have 

 

Fig. 6. Evolution of control signal for each state (Up, simple control loop simulation without 
SNN, down, simulating the proposed SNN structure). 
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virtually open domains, while in practice, these are limited. Another example is the 
computed control signal. Appropriate radii were selected to achieve the maximal values 
required for the given initial conditions. 

4 Simulation Scenario 

4.1 Simulation Parameters 

In order to evaluate the architecture performance, the MWIP starts from an initial state 
𝑥௜ = [4,0,0.1,0], with a desired vector state 𝑥ௗ = [6,0,0,0]. Table 1 shows the MWIP 
model parameters used and 𝑔 = 9.81𝑚/𝑠ଶ . For the control loop, 𝑢 = −𝐾(𝑥 − 𝑥ௗ), 
setting 𝑄 =  𝐼  and 𝑅 =  0.001, the matrix 𝐾 =  [−100, −323.3434, −542.0927,
−541.08],  using the described methods in [20, 21]. The simulation period has a 
duration of  𝑡 =  20𝑠  with a step integration of  1 𝑚𝑠. 

4.2 Results 

Fig. 4 shows the MWIP space state evolution. We can see the initial values evolve 
towards the desired vector state successfully, with a smooth transition and finishing 
with a relatively small error, as shown in Fig. 5. It is worth mentioning the stochastic 
and noisy nature of the control signals (See Fig. 6), due to spike-based sparse coding, 
oscillate but achieve to represent the desired control signal. 

5 Conclusions and Future Work 

During the development of this work, a neural architecture based in a biologically 
plausible model can be used to emulate system dynamics and control implementation. 
It has been shown how to declare control structures and implement them successfully 
in under-actuated robotic systems. It is shown that a correct radius specification for 
each ensemble reflects the precision of its output control signal. 

However, while this control strategy reaches a desired vector state, the produced 
control signals seem to be noisy and stochastic. It reminds those produced by control 
strategies such as sliding modes [17]. While noise added by the neural dynamics might 
be problematic, it adds a small value, avoiding singular matrices during encoding and 
decoding processes used in NEF [7]. 

This also might be beneficial to prevent an overfitting case. We consider possible 
future works, like a Kalman filter implementation in SNN networks for signal cleaning, 
or online dynamics estimation of the plant to compute the control signal, exploring 
other control techniques such as ADRC [29] for unknown plant dynamics and its 
possible neuromorphic implementation in FPGA or ASIC devices. 
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